
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Approximating Annuity using Binary Search
Algorithm and Ternary Search Algorithm

Hokki Suwanda - 13519143
Major in Informatics Engineering

School of Electrical Engineering and Informatics
Bandung Institute of Technology, Ganesha Street no.10, Bandung City

13519143@std.stei.itb.ac.id

Abstract—Annuity is very frequent in our lives. Many has
tried determining the value of annuity, even a formula is
generated. However, the formula is quite hard to remember and
derive. Using decrease and conquer, specifically binary search
algorithm and ternary search algorithm, we will approximate
annuity value.

Keywords—annuity; decrease and conquer; binary search
algorithm; ternary search algorithm

I. INTRODUCTION
As humans grow, humans will be interacting with money

more frequently. Money is very important in our lives.
However, keep in mind that money is not everything nor
money can buy everything. They will save money, make
money, and use money. Some are very good at making money
that they have so much money. Some are very bad at saving
money that they have almost no money.

Those good at making money need to save their money
somewhere other than their own house. In our current era,
banks exist for people to save their money. Using bank
services, however, is not free, it costs money. The fee is usually
paid monthly at a constant interval. Some even invest their
money to make more money out of it.

Those bad at saving money will try to loan some money
from another party, mainly official financial companies,
especially banks. Those who loan from official financial
companies will need to pay the amount they loan back to the
loaner routinely. The paid amount for every payment is
constant.

Year by year, medical fee is always growing. This
condition is very bad, considering the frailness of us humans.
Due to this, some worried not having money to pay the medical
fee. This leads to people using health insurance. However,
using health insurance also costs money, which we will pay
regularly until the period is over.

Those forms of routine constant payment are annuity. In
fact, annuity has so many benefits. Its benefits are not limited
to future preparation, living benefit. Yet, keep in mind that
owning an annuity may instead cost more money.

II. BASE THEORY

A. Annuity
Annuity is a series of payments in constant intervals. In

banking theory, annuity is routine payment done by one party
to another party such as banks and insurance companies. There
are many cases of annuity in our world, insurance payments
being a case. Other examples of the cases are pension annuity
and home mortgage.

The purchaser gives series of contributions in an interval.
Meanwhile, the insurer is then obligated to make periodic
payments to the purchaser at the future, depending on the type
of annuity being used.

In financial mathematics, annuity consists of two,
installment fee and interest. Financial mathematics provides a
formula to determine credit annuity, which we will derive. Let
ai be the installment fee for i-th payment and bi be the interest
for i-th payment. For n payment times, equation (1) is satisfied.

 A = a1 + b1 = a2 + b2 = ... = an + bn (1)

where A is the credit annuity.

If we loaned M with an interest rate of m, for i-th payment,
both equations (2) and (3) are satisfied.

 a1 + a2 + a3 + ... + an = M (2)

 ai = a1 (1 + m)n - 1 (3)

Equation (2) shows that sum of all installment fee is the
loaned money M. Which means, for i-th payment, ai will be
subtracted from M. Interest fee bi is the product of interest rate
and the rest of unpaid loaned money. Which means

 b1 = Mm (4)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

because none of M has been paid. Geometric series formula
gives

 a1 ((1 + m)n – 1) / m = M. (5)

By combining equations (4) and (5), value of A can be counted
using equation (6). Equation (6) is the so called annuity
formula. However, the formula will not be used as we will
approximate A with binary search algorithm and ternary search
algorithm.

 A = Mm / (1 – (1 + m)-n) (6)

B. Recursion
Recursion is a process where a function, for example f, calls

another instance of f. The recursion “happening” is named
recurrence, similar to the word “occurrence”. Most recursions
are easy to implement because they are easy to identify.
Recursion is mostly used in Dynammic Programming and
Depth First Search Algorithm.

Recursion consists of two parts, base and recurrece. Base is
usually one or more cases where the problem is small enough
to solve or where the solution is on the surface, which doesn’t
require any complex calculations and/or computations. The
recurrence is the part where f calls another instance of f.

The advantage of recursion is that recursion can be used in
a scenario where regular looping cannot solve. Another
advantage of recursion is, already stated above, easy to
implement because the logic is easy to understand. The
drawback is that recursion takes a lot of memory space.
Systems stores the process on a stack, which grows by time
because of recursion.

There is an alternative to recursion, which is by using a data
structure called “stack”. The reason is simple, the behavior of
stack is analogous to simulating recurrence. Calling another
instance of f means that we push the arguments to the stack.
Stack is a data structure that follows the behavior of stacks (of
things) in real world. Only the topmost element of a stack is
accessible. Think of a stack as deck of cards where we can only
see and draw the top card of the deck.

Recursion is not always implemented in the form of
functions or procedures. Some recursions are implemented
different. For example, using stack as stated above. Some
recursions are also implemented in a standard loop with
changing parameters. The implementation, however, depends
on the problem to be solved. If the problem can be solved by
using recursion with standard loop, implementing the recursion
with standard loop is very recommended.

C. Decrease and Conquer
Decrease and Conquer is an algorithm design that reduces

the size of the problem into more than one subproblems
(usually two subproblems). One of the subproblems is then
chosen to be processed, usually recursively. It means that most
of the time, the same algorithm used to process the problem is

also used to process the subproblem. The solution for the
chosen subproblem is then extended to obtain the solution of
the problem. In some old literatures, Decrease and Conquer is
categorized in Divide and Conquer.

Divide and Conquer is an algorithm design that splits the
size of the problem into more than one subproblems (usually
two subproblems). All subproblems is then processed, usually
recursively by using the same algorithm on every subproblem.
The solution of every subproblems generated is then combined
as a solution of the problem. Some examples of divide and
conquer problems and algorithms are merge sort algorithm,
quick sort algorithm, convex hull, closest pair problem, and
multiplication.

There is a major difference between Decrease and Conquer
and Divide and Conquer. Decrease and Conquer reduces the
problem whereas Divide and Conquer splits the problem.

There are three variants of Decrease and Conquer based on
the problem reduction, which are :

1) Constant Decremental Decrease and Conquer –
Reducing the problem size by a constant, usually 1. Some
algorithms that belong in this category are insertion sort,
depth-first search, breadth-first search, topological sort, and
permutation generator algorithm.

2) Factored Decremental Decrease and Conquer –
Reducing the size of the problem by a constant factor, usually
2. Some algorithms and problems from this category are
binary search, ternary search, fake-coin problems, and russian
peasant multiplication problem.

3) Variabled Decremental Decrease and Conquer –
Reducing the size of the problem by undetermined size. Some
problems and algorithms belonging to this category are
interpolation search, euclid’s algorithm, and selection
problem.

D. Binary Search
Binary Search is Decrease and Conquer with factored

decrement of 2. Binary Search has the same characteristics as
Decrease and Conquer, which is reducing the problem into two
subproblems and choosing one subproblems satisfying the
constraints to solve. The word “constraint” is not literal, it
means that it is logically satisfied.

Binary Search is a searching technique by repeatedly
reducing the problem into half until the problem is small
enough to be solved without using any complex computations.
If the answer of the problem is found immediately, the
algorithm stops. If the answer of the problem is not found, the
algorithm continues. This algorithm is usually used to search
one out of so many datas inside a program.

The requirement is that the data has to be sorted so the
subproblems to be chosen can be determined. If the data has
not been sorted, then there is no way to determine the right
subproblems to choose because both the left and right half of
the problem can contain the solution of the problem. Thus, if
the data is sorted, the solution will be on only one side, which
can be chosen logically depending on the problem.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

procedure BinSearch(input l: integer,
input r: integer)

{ Guess the number the player is
holding by using binary search. Player
gives input “>” or “<=” depending
whether the number program generated is
“greater than” or “less or equal than”
the number player is holding }

{ K defined outside }

Declaration:

mid: integer

Algorithm:

if (l < r) and (K > 0) then

 mid  (l + r) div 2

 { guess mid }

 K  K - 1

 { player gives input }

 if (input = “>”) then

 { the guess is too big }

 BinSearch(l, m – 1)

 else { input = “<=” }

 BinSearch(m + 1, r)

procedure ReverseGuess(input l:
integer, input r: integer)

{ Player guesses the number N program
is holding by using ternary search.
Program outputs “>” or “<=” depending
whether the number player guessed is
“greater than” or “less or equal than”
the number program is holding }

Declaration:

mid1, mid2: integer

Algorithm:

if (l < r) then

 mid1  l + ((r – l) div 3)

 mid2  r – ((r – l) div 3)

 {player guess mid1, program outputs}

 {player guess mid2, program outputs}

 if (output1 = “>”) then

 ReverseGuess(l, mid1 - 1)

 else if (output2 = “<=”) then

Consider a number guessing problem. The program will try
to guess the number a player is holding, which is an integer in
the interval of 1 to N, in K tries. If X is small, the program can
query the number sequentially. However, if N is big and K is
small, binary search algorithm can be used to solve it in a
complexity of O(log2N), with an assumption where value of K
has to be at least log2N. The complexity will be proven
afterwards. The pseudocode for number guessing problem
using binary search is as follows.

By assuming K is at least log2N, the time to process binary
search algorithm is

 Τ(Ν) = Τ(Ν / 2) + 1, (2)

where

 Τ(1) = 0. (3)

Which results in

 Τ(Ν) = log2N = O(logN). (4)

 The complexity of binary search algorithm is, in fact,
relatively small. Many people prefers using binary search over
other searching algorithm. However, there is another searching
algorithm with concepts similar to binary search algorithm. It is
ternary search algorithm.

E. Ternary Search
Ternary Search is Decrease and Conquer with factored

decrement of 3. Ternary Search has the same characteristics as
Decrease and Conquer, which is reducing the problem into
three subproblems and choosing one subproblems satisfying
the constraints to solve. The word “constraint” is not literal, it
means that it is logically satisfied.

Ternary Search is a searching technique by repeatedly
reducing the problem into one third of original size until the
problem is small enough to be solved without using any
complex computations. If the answer of the problem is found
immediately, the algorithm stops. If the answer of the problem
is not found, the algorithm continues. This algorithm is usually
used to search one out of so many datas inside a program.

The requirement is that the data has to be sorted so the
subproblems to be chosen can be determined. If the data has
not been sorted, then there is no way to determine the right
subproblems to choose because all three of the left, middle, and
right one third of the problem can contain the solution of the
problem. Thus, if the data is sorted, the solution will be on only
one side, which can be chosen logically depending on the
problem.

Consider a reverse number guessing problem. The player
will try to guess the number the program is holding, which is
an integer in the interval of 1 to N, in K tries. If X is small, the
player can query the number sequentially. However, if N is big
and K is small, ternary search algorithm can be used to solve it
in a complexity of O(logN), with the assumption where value
of K has to be at least 2log3N. The complexity will be proven
afterwards. The pseudocode for reverse number guessing
problem from player’s side using ternary search algorithm is as
follows.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

 ReverseGuess(mid2, r)

 else

 ReverseGuess(mid1, mid2)

By assuming K is at least 2log3N, the time to process binary
search algorithm is

 Τ(Ν) = Τ(Ν / 3) + 2, (5)

where

 Τ(1) = 0. (6)

Which results in

 Τ(Ν) = 2log3N = O(logN). (7)

 The complexity of ternary search algorithm is, in fact,
relatively small. However, if compared to complexity of binary
search algorithm, ternary search is a bit worse. Time
complexity for binary search algorithm is T(N) = log2N
whereas time complexity for ternary search algorithm is T(N) =
2log3N. The little difference in time complexity makes most
people prefer using binary search algorithm instead of ternary
search algorithm. As the time complexity for binary search
algorithm and ternary search algorithm does not differ much,
both algorithm are still usable.

III. DETERMINING ANNUITY

A. Requirements
One of the requirements of binary search and ternary search

algorithm being usable is that the data have to be sorted.
Annuity satisfies the requirements. Let A be the true amount of
monthly annuity to be paid, counted by using the annuity
formula. If we try to pay with the value B where B > A, after
the fee period is over, the credit will be overpaid. The other
way around, if we try to pay with the value B where B < A, the
credit is underpaid. However, if we pay the credit with the
value B where B = A, the credit is paid the exact amount.
Which means, annuity has a sorted areas, which are underpaid,
exact, and overpaid. This is shown in the illustration below.

As shown in Fig. 1. there consists three areas. The leftmost
(the lightest grey) area represents the values of B that causes
the credit to be underpaid. The middle (the moderate grey) area
represents the area where value of B is “exactly paid”. Do note
that the “exactly paid” amount becomes an area because there
are mathematical limitations for a floating point, thus very
small errors exists, and the area is the consequence of
neglecting the very small errors. The rightmost (the darkest
grey) area represents values of B that causes the credit to be
overpaid. By using the area illustrated in Fig. 1., the writer will
use Decrease and Conquer Algorithm, especially Binary Search
and Ternary Search Algorithm to approximate the value of A
using B.

Fig. 1. Sorted area of annuity.

We need to represent these three areas as a number,
because computation using number is easier. Let a negative
number (–1) represents underpaid. Let 0 be a number that
represents “exactly paid”. Let 1 be a positive number
representing overpaid. With this, we can now fully declare that
annuity is sorted. Thus we can then use binary search algorithm
and ternary search algorithm.

There are two alternatives of approximating credit annuity
using binary search algorithm or ternary search algorithm. The
first alternative is analogous to number guessing game and
reverse number guessing game. However, it is not simple to be
implemented because the number that we should guess is
unknown to even the program.

The better alternative to approximate credit annuity is by
“testing” the guessed number, as in number guessing game.
The test is required to identify which area the guessed number
belongs to, either underpaid, exactly paid, or overpaid. The test
requires little to no knowledge about annuity. The knowledge
we need is in these three equations below.

 a + a(m + 1) + a(m + 1)2 + ... + a(m + 1)n – 1 = M, (8)

 b = Mm, (9)

and

 Α = a + b (10)

where m is the interest rate, A is the credit annuity, M is the
price to be paid, n is the number of times to be paid, a is
installment price, and b is interest price.

With three equations above, we can make the “testing”
algorithm for the guessed number. Let the guessed number
which we use to approximate A be B. The steps of the testing
algorithm is as follows:

1) Initiate Mt as M, Mt represents the remaining price to
pay.

2) If n is not zero, which means we still have to pay the
annuity, subtract B – bt from Mt. In other words, replace Mt by
Mt(m + 1) – B. This formula comes from equation (10) and
equation (9). Don’t forget to subtract 1 from n.

3) Repeat step 2) until n is 0.
4) Check the value of Mt. If Mt is in the range of error,

then B is exactly paid. If Mt is negative, then B is underpaid.
Else, B is overpaid.

5) The testing judgement, exactly paid, underpaid,
overpaid is then changed into 0, –1, and 1 respectively.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

function test(B: real)  integer

{ Returns -1 if B is underpaid, 0 if B
is exactly paid, and 1 if B is
overpaid. }

{ n, m, M, and maximum error of EPSILON
is defined }

Declaration:

i : integer

Mt : real

Algorithm:

Mt  M

for i  1 to n do

 Mt  ((1 + m) * Mt) – B

if (Mt > EPSILON) then

 { overpaid }

 return 1

else if (Mt < -EPSILON) then

 { underpaid }

 return -1

else

 { exactly paid }

 return 0

function BinSearchApprox(l: real, r:
real)  double

{ approximating the credit annuity A by
using B, center of interval }

{ test function is defined }

Declaration:

B: real

test_value: integer

Algorithm:

B  (l + r) / 2

test_value  test(B)

if (test_value = 1) then

 { overpaid, shift left }

 return BinSearchApprox(l, B)

else if (test_value = -1) then

 { underpaid, shift right }

 return BinSearchApprox(B, r)

else {test_value = 0}

 { the solution is found }

 return B

With five steps stated above, we can then propose a testing
algorithm to test the value of B which we use to approximate
the value of A. Below is the pseudocode of the testing
algorithm.

With the testing algorithm finished, we can now
approximate the value of A using B without knowing its true
value.

B. Binary Search
Approximating A using B by binary search has almost the

same step as number guessing game. A very obvious fact is
that A lies in the interval [0, M]. We will then use binary search
on the interval. Let’s declare every interval in [l, r]. Let the
middle floating point in the interval of [l, r] be B, because we
approximate A using middle points.

The middle point B will then tested using testing algorithm
mentioned previously. Depending on the result of the test, l or r
can change. If the result of the test is underpaid, then every
value smaller than B (left half) is also underpaid, thus A lies on
the right half of the interval, which is [B, r]. If the result of the
test is overpaid, then every value bigger than B (right half) is
also overpaid, thus A lies on the left half of the interval, which
is [l, B]. If the result is exactly paid, then B is the solution. The
same algorithm is then applied to the chosen interval.
Pseudocode for approximation using binary search algorithm is
shown above.

C. Ternary Search
Approximating A using B by ternary search has almost the

same step as reverse number guessing game. A very obvious
fact is that A lies in the interval [0, M]. We will then use
ternary search on the interval. Let’s declare every interval in [l,
r]. Let the one-third of the interval be B1 and the two-third of
the interval be B2.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

function TerSearchApprox(l: real, r:
real)  double

{ approximating the credit annuity A by
using B1 and B2, one-third and two-
third of interval respectively }

{ test function is defined }

Declaration:

B1, B2: real

test_one, test_two: integer

Algorithm:

B1  l + ((r – l) / 3)

B2  r – ((r – l) / 3)

test_one  test(B1)

test_two  test(B2)

if (test_one = 0) then

 {paying with B1 will be exactly paid}

 return B1

else if (test_two = 0) then

 {paying with B2 will be exactly paid}

 return B2

else if (test_one = 1) then

 {B1 is overpaid, process left-most}

 return TerSearchApprox(l, B1)

else if (test_two = -1) then

 {B2 is underpaid, process right-most}

 return TerSearchApprox(B2, r)

else {test_one = -1 and test_two = 1}

 return TerSearchApprox(B1, B2)

Both B1 and B2 will then be tested. Depending on the result
of the test, l or r can change. If B2 is underpaid, then every
value smaller than B2 (also B1) is also underpaid, thus A lies on
the right-most subproblem, which is [B2, r]. If B1 is overpaid,
then every value bigger than B1 (including B2) is also
overpaid, thus A lies on the left-most subproblem, which is [l,
B1]. If B1 is underpaid and B2 is overpaid, then A lies between
B1 and B2, which means A is in [B1, B2]. If either of B1 or B2
is exactly paid, then it is the solution. The same algorithm is
then applied to the chosen subproblem. Pseudocode for
approximation using ternary search algorithm is shown below.

VIDEO LINK AT YOUTUBE.
https://youtu.be/Mpz-1KNcpis

ACKNOWLEDGMENT
The writer thanks lecturers of IF2211 Algorithm Strategies

who taught and guided the writer on weekly lectures. The
writer is also grateful to friends that helped the writer on
solving some problems regarding this paper. The writer is also
grateful to the writer’s tutor in LOPI who inspire the title of
this paper. The writer is also very grateful to close friends who
keep on supporting the writer everyday on this pandemic.

REFERENCES
[1] https://socs.binus.ac.id/2019/12/26/binary-search/
[2] https://www.geeksforgeeks.org/decrease-and-conquer/
[3] https://www.konsep-matematika.com/2016/08/anuitas-dan-angsuran-

matematika-keuangan.html
[4] https://www.akseleran.co.id/blog/anuitas-adalah/
[5] https://www.merrilledge.com/article/use-annuities-to-prepare-for-your-

future#:~:text=Annuities%20are%20used%20mainly%20to,withdrawals
%20or%20receiving%20periodic%20payments.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 5 Mei 2021

Hokki Suwanda - 13519143

https://youtu.be/Mpz-1KNcpis
https://socs.binus.ac.id/2019/12/26/binary-search/
https://www.geeksforgeeks.org/decrease-and-conquer/
https://www.konsep-matematika.com/2016/08/anuitas-dan-angsuran-matematika-keuangan.html
https://www.konsep-matematika.com/2016/08/anuitas-dan-angsuran-matematika-keuangan.html
https://www.akseleran.co.id/blog/anuitas-adalah/
https://www.merrilledge.com/article/use-annuities-to-prepare-for-your-future#:%7E:text=Annuities%20are%20used%20mainly%20to,withdrawals%20or%20receiving%20periodic%20payments
https://www.merrilledge.com/article/use-annuities-to-prepare-for-your-future#:%7E:text=Annuities%20are%20used%20mainly%20to,withdrawals%20or%20receiving%20periodic%20payments
https://www.merrilledge.com/article/use-annuities-to-prepare-for-your-future#:%7E:text=Annuities%20are%20used%20mainly%20to,withdrawals%20or%20receiving%20periodic%20payments

	I. Introduction
	II. Base Theory
	A. Annuity
	B. Recursion
	C. Decrease and Conquer
	1) Constant Decremental Decrease and Conquer – Reducing the problem size by a constant, usually 1. Some algorithms that belong in this category are insertion sort, depth-first search, breadth-first search, topological sort, and permutation generator a...
	2) Factored Decremental Decrease and Conquer – Reducing the size of the problem by a constant factor, usually 2. Some algorithms and problems from this category are binary search, ternary search, fake-coin problems, and russian peasant multiplication ...
	3) Variabled Decremental Decrease and Conquer – Reducing the size of the problem by undetermined size. Some problems and algorithms belonging to this category are interpolation search, euclid’s algorithm, and selection problem.

	D. Binary Search
	E. Ternary Search

	III. Determining Annuity
	A. Requirements
	1) Initiate Mt as M, Mt represents the remaining price to pay.
	2) If n is not zero, which means we still have to pay the annuity, subtract B – bt from Mt. In other words, replace Mt by Mt(m + 1) – B. This formula comes from equation (10) and equation (9). Don’t forget to subtract 1 from n.
	3) Repeat step 2) until n is 0.
	4) Check the value of Mt. If Mt is in the range of error, then B is exactly paid. If Mt is negative, then B is underpaid. Else, B is overpaid.
	5) The testing judgement, exactly paid, underpaid, overpaid is then changed into 0, –1, and 1 respectively.

	B. Binary Search
	C. Ternary Search
	Video Link at Youtube.
	Acknowledgment
	References

