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Abstract—Annuity is very frequent in our lives. Many has 
tried determining the value of annuity, even a formula is 
generated. However, the formula is quite hard to remember and 
derive. Using decrease and conquer, specifically binary search 
algorithm and ternary search algorithm, we will approximate 
annuity value. 
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I.  INTRODUCTION 
As humans grow, humans will be interacting with money 

more frequently. Money is very important in our lives. 
However, keep in mind that money is not everything nor 
money can buy everything. They will save money, make 
money, and use money. Some are very good at making money 
that they have so much money. Some are very bad at saving 
money that they have almost no money. 

Those good at making money need to save their money 
somewhere other than their own house. In our current era, 
banks exist for people to save their money. Using bank 
services, however, is not free, it costs money. The fee is usually 
paid monthly at a constant interval. Some even invest their 
money to make more money out of it. 

Those bad at saving money will try to loan some money 
from another party, mainly official financial companies, 
especially banks. Those who loan from official financial 
companies will need to pay the amount they loan back to the 
loaner routinely. The paid amount for every payment is 
constant.  

Year by year, medical fee is always growing. This 
condition is very bad, considering the frailness of us humans. 
Due to this, some worried not having money to pay the medical 
fee. This leads to people using health insurance. However, 
using health insurance also costs money, which we will pay 
regularly until the period is over. 

Those forms of routine constant payment are annuity. In 
fact, annuity has so many benefits. Its benefits are not limited 
to future preparation, living benefit. Yet, keep in mind that 
owning an annuity may instead cost more money. 

II. BASE THEORY 

A. Annuity 
Annuity is a series of payments in constant intervals. In 

banking theory, annuity is routine payment done by one party 
to another party such as banks and insurance companies. There 
are many cases of annuity in our world, insurance payments 
being a case. Other examples of the cases are pension annuity 
and home mortgage. 

The purchaser gives series of contributions in an interval. 
Meanwhile, the insurer is then obligated to make periodic 
payments to the purchaser at the future, depending on the type 
of annuity being used. 

In financial mathematics, annuity consists of two, 
installment fee and interest. Financial mathematics provides a 
formula to determine credit annuity, which we will derive. Let 
ai be the installment fee for i-th payment and bi be the interest 
for i-th payment. For n payment times, equation (1) is satisfied. 

 A = a1 + b1 = a2 + b2 = ... = an + bn (1) 

where A is the credit annuity. 

If we loaned M with an interest rate of m, for i-th payment, 
both equations (2) and (3) are satisfied. 

 a1 + a2 + a3 + ... + an = M (2) 

 ai = a1 (1 + m)n - 1 (3) 

Equation (2) shows that sum of all installment fee is the 
loaned money M. Which means, for i-th payment, ai will be 
subtracted from M. Interest fee bi is the product of interest rate 
and the rest of unpaid loaned money. Which means 

 b1 = Mm (4) 
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because none of M has been paid. Geometric series formula 
gives 

 a1 ((1 + m)n – 1) / m = M. (5) 

By combining equations (4) and (5), value of A can be counted 
using equation (6). Equation (6) is the so called annuity 
formula. However, the formula will not be used as we will 
approximate A with binary search algorithm and ternary search 
algorithm. 

 A = Mm / (1 – (1 + m)-n) (6) 

B. Recursion 
Recursion is a process where a function, for example f, calls 

another instance of f. The recursion “happening” is named 
recurrence, similar to the word “occurrence”. Most recursions 
are easy to implement because they are easy to identify. 
Recursion is mostly used in Dynammic Programming and 
Depth First Search Algorithm. 

Recursion consists of two parts, base and recurrece. Base is 
usually one or more cases where the problem is small enough 
to solve or where the solution is on the surface, which doesn’t 
require any complex calculations and/or computations. The 
recurrence is the part where f calls another instance of f. 

The advantage of recursion is that recursion can be used in 
a scenario where regular looping cannot solve. Another 
advantage of recursion is, already stated above, easy to 
implement because the logic is easy to understand. The 
drawback is that recursion takes a lot of memory space. 
Systems stores the process on a stack, which grows by time 
because of recursion. 

There is an alternative to recursion, which is by using a data 
structure called “stack”. The reason is simple, the behavior of 
stack is analogous to simulating recurrence. Calling another 
instance of f means that we push the arguments to the stack. 
Stack is a data structure that follows the behavior of stacks (of 
things) in real world. Only the topmost element of a stack is 
accessible. Think of a stack as deck of cards where we can only 
see and draw the top card of the deck. 

Recursion is not always implemented in the form of 
functions or procedures. Some recursions are implemented 
different. For example, using stack as stated above. Some 
recursions are also implemented in a standard loop with 
changing parameters. The implementation, however, depends 
on the problem to be solved. If the problem can be solved by 
using recursion with standard loop, implementing the recursion 
with standard loop is very recommended. 

C. Decrease and Conquer 
Decrease and Conquer is an algorithm design that reduces 

the size of the problem into more than one subproblems 
(usually two subproblems). One of the subproblems is then 
chosen to be processed, usually recursively. It means that most 
of the time, the same algorithm used to process the problem is 

also used to process the subproblem. The solution for the 
chosen subproblem is then extended to obtain the solution of 
the problem. In some old literatures, Decrease and Conquer is 
categorized in Divide and Conquer. 

Divide and Conquer is an algorithm design that splits the 
size of the problem into more than one subproblems (usually 
two subproblems). All subproblems is then processed, usually 
recursively by using the same algorithm on every subproblem. 
The solution of every subproblems generated is then combined 
as a solution of the problem. Some examples of divide and 
conquer problems and algorithms are merge sort algorithm, 
quick sort algorithm, convex hull, closest pair problem, and 
multiplication. 

There is a major difference between Decrease and Conquer 
and Divide and Conquer. Decrease and Conquer reduces the 
problem whereas Divide and Conquer splits the problem. 

There are three variants of Decrease and Conquer based on 
the problem reduction, which are : 

1) Constant Decremental Decrease and Conquer – 
Reducing the problem size by a constant, usually 1. Some 
algorithms that belong in this category are insertion sort, 
depth-first search, breadth-first search, topological sort, and 
permutation generator algorithm. 

2) Factored Decremental Decrease and Conquer – 
Reducing the size of the problem by a constant factor, usually 
2. Some algorithms and problems from this category are 
binary search, ternary search, fake-coin problems, and russian 
peasant multiplication problem. 

3) Variabled Decremental Decrease and Conquer – 
Reducing the size of the problem by undetermined size. Some 
problems and algorithms belonging to this category are 
interpolation search, euclid’s algorithm, and selection 
problem. 

D. Binary Search 
Binary Search is Decrease and Conquer with factored 

decrement of 2. Binary Search has the same characteristics as 
Decrease and Conquer, which is reducing the problem into two 
subproblems and choosing one subproblems satisfying the 
constraints to solve. The word “constraint” is not literal, it 
means that it is logically satisfied. 

Binary Search is a searching technique by repeatedly 
reducing the problem into half until the problem is small 
enough to be solved without using any complex computations. 
If the answer of the problem is found immediately, the 
algorithm stops. If the answer of the problem is not found, the 
algorithm continues. This algorithm is usually used to search 
one out of so many datas inside a program. 

The requirement is that the data has to be sorted so the 
subproblems to be chosen can be determined. If the data has 
not been sorted, then there is no way to determine the right 
subproblems to choose because both the left and right half of 
the problem can contain the solution of the problem. Thus, if 
the data is sorted, the solution will be on only one side, which 
can be chosen logically depending on the problem.  
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procedure BinSearch(input l: integer, 
input r: integer) 

{ Guess the number the player is 
holding by using binary search. Player 
gives input “>” or “<=” depending 
whether the number program generated is 
“greater than” or “less or equal than” 
the number player is holding } 

{ K defined outside } 

Declaration: 

mid: integer 

Algorithm: 

if (l < r) and (K > 0) then 

 mid  (l + r) div 2 

 { guess mid } 

 K  K - 1 

 { player gives input } 

 if (input = “>”) then 

  { the guess is too big } 

  BinSearch(l, m – 1) 

 else { input = “<=” } 

  BinSearch(m + 1, r) 

 

procedure ReverseGuess(input l: 
integer, input r: integer) 

{ Player guesses the number N program 
is holding by using ternary search. 
Program outputs “>” or “<=” depending 
whether the number player guessed is 
“greater than” or “less or equal than” 
the number program is holding } 

Declaration: 

mid1, mid2: integer 

Algorithm: 

if (l < r) then 

 mid1  l + ((r – l) div 3) 

 mid2  r – ((r – l) div 3) 

 {player guess mid1, program outputs} 

 {player guess mid2, program outputs} 

 if (output1 = “>”) then 

  ReverseGuess(l, mid1 - 1) 

 else if (output2 = “<=”) then 

    

  

    

Consider a number guessing problem. The program will try 
to guess the number a player is holding, which is an integer in 
the interval of 1 to N, in K tries. If X is small, the program can 
query the number sequentially. However, if N is big and K is 
small, binary search algorithm can be used to solve it in a 
complexity of O(log2N), with an assumption where value of K 
has to be at least log2N. The complexity will be proven 
afterwards. The pseudocode for number guessing problem 
using binary search is as follows. 

By assuming K is at least log2N, the time to process binary 
search algorithm is 

 Τ(Ν) = Τ(Ν / 2) + 1, (2) 

where 

 Τ(1) = 0. (3) 

Which results in 

 Τ(Ν) = log2N = O(logN). (4) 

 The complexity of binary search algorithm is, in fact, 
relatively small. Many people prefers using binary search over 
other searching algorithm. However, there is another searching 
algorithm with concepts similar to binary search algorithm. It is 
ternary search algorithm.  

E. Ternary Search 
Ternary Search is Decrease and Conquer with factored 

decrement of 3. Ternary Search has the same characteristics as 
Decrease and Conquer, which is reducing the problem into 
three subproblems and choosing one subproblems satisfying 
the constraints to solve. The word “constraint” is not literal, it 
means that it is logically satisfied. 

Ternary Search is a searching technique by repeatedly 
reducing the problem into one third of original size until the 
problem is small enough to be solved without using any 
complex computations. If the answer of the problem is found 
immediately, the algorithm stops. If the answer of the problem 
is not found, the algorithm continues. This algorithm is usually 
used to search one out of so many datas inside a program. 

The requirement is that the data has to be sorted so the 
subproblems to be chosen can be determined. If the data has 
not been sorted, then there is no way to determine the right 
subproblems to choose because all three of the left, middle, and 
right one third of the problem can contain the solution of the 
problem. Thus, if the data is sorted, the solution will be on only 
one side, which can be chosen logically depending on the 
problem.  

Consider a reverse number guessing problem. The player 
will try to guess the number the program is holding, which is 
an integer in the interval of 1 to N, in K tries. If X is small, the 
player can query the number sequentially. However, if N is big 
and K is small, ternary search algorithm can be used to solve it 
in a complexity of O(logN), with the assumption where value 
of K has to be at least 2log3N. The complexity will be proven 
afterwards. The pseudocode for reverse number guessing 
problem from player’s side using ternary search algorithm is as 
follows. 
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  ReverseGuess(mid2, r) 

 else 

  ReverseGuess(mid1, mid2) 

By assuming K is at least 2log3N, the time to process binary 
search algorithm is 

 Τ(Ν) = Τ(Ν / 3) + 2, (5) 

where 

 Τ(1) = 0. (6) 

Which results in 

 Τ(Ν) = 2log3N = O(logN). (7) 

 The complexity of ternary search algorithm is, in fact, 
relatively small. However, if compared to complexity of binary 
search algorithm, ternary search is a bit worse. Time 
complexity for binary search algorithm is T(N) = log2N 
whereas time complexity for ternary search algorithm is T(N) = 
2log3N. The little difference in time complexity makes most 
people prefer using binary search algorithm instead of ternary 
search algorithm. As the time complexity for binary search 
algorithm and ternary search algorithm does not differ much, 
both algorithm are still usable. 

III. DETERMINING ANNUITY 

A. Requirements 
One of the requirements of binary search and ternary search 

algorithm being usable is that the data have to be sorted. 
Annuity satisfies the requirements. Let A be the true amount of 
monthly annuity to be paid, counted by using the annuity 
formula. If we try to pay with the value B where B > A, after 
the fee period is over, the credit will be overpaid. The other 
way around, if we try to pay with the value B where B < A, the 
credit is underpaid. However, if we pay the credit with the 
value B where B = A, the credit is paid the exact amount. 
Which means, annuity has a sorted areas, which are underpaid, 
exact, and overpaid. This is shown in the illustration below. 

As shown in Fig. 1. there consists three areas. The leftmost 
(the lightest grey) area represents the values of B that causes 
the credit to be underpaid. The middle (the moderate grey) area 
represents the area where value of B is “exactly paid”. Do note 
that the “exactly paid” amount becomes an area because there 
are mathematical limitations for a floating point, thus very 
small errors exists, and the area is the consequence of 
neglecting the very small errors. The rightmost (the darkest 
grey) area represents values of B that causes the credit to be 
overpaid. By using the area illustrated in Fig. 1., the writer will 
use Decrease and Conquer Algorithm, especially Binary Search 
and Ternary Search Algorithm to approximate the value of A 
using B. 

 

Fig. 1. Sorted area of annuity. 

We need to represent these three areas as a number, 
because computation using number is easier. Let a negative 
number (–1) represents underpaid. Let 0 be a number that 
represents “exactly paid”. Let 1 be a positive number 
representing overpaid. With this, we can now fully declare that 
annuity is sorted. Thus we can then use binary search algorithm 
and ternary search algorithm. 

There are two alternatives of approximating credit annuity 
using binary search algorithm or ternary search algorithm. The 
first alternative is analogous to number guessing game and 
reverse number guessing game. However, it is not simple to be 
implemented because the number that we should guess is 
unknown to even the program.  

The better alternative to approximate credit annuity is by 
“testing” the guessed number, as in number guessing game. 
The test is required to identify which area the guessed number 
belongs to, either underpaid, exactly paid, or overpaid. The test 
requires little to no knowledge about annuity. The knowledge 
we need is in these three equations below. 

 a + a(m + 1) + a(m + 1)2 + ... + a(m + 1)n – 1 = M, (8) 

 b = Mm, (9) 

and 

 Α = a + b (10) 

where m is the interest rate, A is the credit annuity, M is the 
price to be paid, n is the number of times to be paid, a is 
installment price, and b is interest price. 

With three equations above, we can make the “testing” 
algorithm for the guessed number. Let the guessed number 
which we use to approximate A be B. The steps of the testing 
algorithm is as follows: 

1) Initiate Mt as M, Mt represents the remaining price to 
pay. 

2) If n is not zero, which means we still have to pay the 
annuity, subtract B – bt from Mt. In other words, replace Mt by 
Mt(m + 1) – B. This formula comes from equation (10) and 
equation (9). Don’t forget to subtract 1 from n. 

3) Repeat step 2) until n is 0. 
4) Check the value of Mt. If Mt is in the range of error, 

then B is exactly paid. If Mt is negative, then B is underpaid. 
Else, B is overpaid. 

5) The testing judgement, exactly paid, underpaid, 
overpaid is then changed into 0, –1, and 1 respectively. 
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function test(B: real)  integer 

{ Returns -1 if B is underpaid, 0 if B 
is exactly paid, and 1 if B is 
overpaid. } 

{ n, m, M, and maximum error of EPSILON 
is defined } 

Declaration: 

i : integer 

Mt : real 

Algorithm: 

Mt  M 

for i  1 to n do 

 Mt  ((1 + m) * Mt) – B 

if (Mt > EPSILON) then 

 { overpaid } 

 return 1 

else if (Mt < -EPSILON) then 

 { underpaid } 

 return -1 

else 

 { exactly paid } 

 return 0 

function BinSearchApprox(l: real, r: 
real)  double 

{ approximating the credit annuity A by 
using B, center of interval } 

{ test function is defined } 

Declaration: 

B: real 

test_value: integer 

Algorithm: 

B  (l + r) / 2 

test_value  test(B) 

if (test_value = 1) then 

 { overpaid, shift left } 

 return BinSearchApprox(l, B) 

else if (test_value = -1) then 

 { underpaid, shift right } 

 return BinSearchApprox(B, r) 

else {test_value = 0} 

 { the solution is found } 

 return B 

With five steps stated above, we can then propose a testing 
algorithm to test the value of B which we use to approximate 
the value of A. Below is the pseudocode of the testing 
algorithm. 

With the testing algorithm finished, we can now 
approximate the value of A using B without knowing its true 
value. 

B. Binary Search 
Approximating A using B by binary search has almost the 

same step as number guessing game. A very obvious fact is 
that A lies in the interval [0, M]. We will then use binary search 
on the interval. Let’s declare every interval in [l, r]. Let the 
middle floating point in the interval of [l, r] be B, because we 
approximate A using middle points.  

The middle point B will then tested using testing algorithm 
mentioned previously. Depending on the result of the test, l or r 
can change. If the result of the test is underpaid, then every 
value smaller than B (left half) is also underpaid, thus A lies on 
the right half of the interval, which is [B, r]. If the result of the 
test is overpaid, then every value bigger than B (right half) is 
also overpaid, thus A lies on the left half of the interval, which 
is [l, B]. If the result is exactly paid, then B is the solution. The 
same algorithm is then applied to the chosen interval. 
Pseudocode for approximation using binary search algorithm is 
shown above. 

C. Ternary Search 
Approximating A using B by ternary search has almost the 

same step as reverse number guessing game. A very obvious 
fact is that A lies in the interval [0, M]. We will then use 
ternary search on the interval. Let’s declare every interval in [l, 
r]. Let the one-third of the interval be B1 and the two-third of 
the interval be B2. 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021 
 

function TerSearchApprox(l: real, r: 
real)  double 

{ approximating the credit annuity A by 
using B1 and B2, one-third and two-
third of interval respectively } 

{ test function is defined } 

Declaration: 

B1, B2: real 

test_one, test_two: integer 

Algorithm: 

B1  l + ((r – l) / 3) 

B2  r – ((r – l) / 3) 

test_one  test(B1) 

test_two  test(B2) 

if (test_one = 0) then 

 {paying with B1 will be exactly paid} 

 return B1 

else if (test_two = 0) then 

 {paying with B2 will be exactly paid} 

 return B2 

else if (test_one = 1) then 

 {B1 is overpaid, process left-most} 

 return TerSearchApprox(l, B1) 

else if (test_two = -1) then 

 {B2 is underpaid, process right-most} 

 return TerSearchApprox(B2, r) 

else {test_one = -1 and test_two = 1} 

 return TerSearchApprox(B1, B2) 

Both B1 and B2 will then be tested. Depending on the result 
of the test, l or r can change. If B2 is underpaid, then every 
value smaller than B2 (also B1) is also underpaid, thus A lies on 
the right-most subproblem, which is [B2, r]. If B1 is overpaid, 
then every value bigger than B1 (including B2) is also 
overpaid, thus A lies on the left-most subproblem, which is [l, 
B1]. If B1 is underpaid and B2 is overpaid, then A lies between 
B1 and B2, which means A is in [B1, B2]. If either of B1 or B2 
is exactly paid, then it is the solution. The same algorithm is 
then applied to the chosen subproblem. Pseudocode for 
approximation using ternary search algorithm is shown below. 

VIDEO LINK AT YOUTUBE. 
https://youtu.be/Mpz-1KNcpis 
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